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Abstract
We demonstrate a system to automatically animate

hand-drawn characters. Starting with skeleton extraction,

meshing and vertex skinning, our system simulates

characters using a neural network in a physics-based

environment. Using an evolutionary algorithm, it searches

for networks that move characters far while keeping a good

posture. We validated the system through a user study with

26 participants. For most drawings (60 %), they felt satisfied

with the generated animation, and in 76 % of cases, they

wished to draw and animate additional characters. The

participants reported mostly positive emotions after seeing

the animations. Only a minority had feelings of strangeness

or had negative emotions. This work demonstrates the

possibility of creating an automated 2-D character

animation system making little assumption on what is

drawn. We believe that this work can enable more children

to engage in creative play and explore their imagination.
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Introduction
Creative play is both engaging and educational. Finger

painting, building with blocks, drawing, or dressing up – all

such activities intimately link imagination and self

expression with exploration and problem solving. With

creative play, children have fun while learning new skills and

enhancing their understanding of the world. However, with

the popularity and ubiquity of digital devices, an increasing

amount of play time happens in the digital world, such as

with video games where the link to creativity is sometimes

questionable. Instead of creative play, children simply play.

To address this situation, we recently developed an app that

builds on the popularity of video games but lies squarely in

the space of creative play [1]. This app allows children to

draw game characters on paper with crayons or markers,

and take a photo with their tablet’s camera to import their

drawings into the app as game sprites. Then, they can

program these sprites through a visual language. While

very successful with children, that app has a limitation: the

sprites themselves are static and lack animation.

Given the success of animated feature films, it is clear that

animation is very engaging for children. However, animation

is notoriously difficult, and the film industry employs

hundreds of highly skilled artists for each movie. Yet, recent

progress in computer graphics and machine learning bring

the vision of fully automated animation closer. In this work,

we build on these ideas by exploring a pipeline for

fully-automated animation of hand-drawn characters. Our

key contributions include a proof of concept that

automatic animation is feasible and a roadmap of the next

steps.

Related work
Automatic animation in general is hard, especially for

characters, because it is an ill-defined problem. Given a

drawing, there are multiple ways to animate it, and prior

knowledge must be provided to the system to choose

between these different possibilities. Traditional character

animation requires an artist to define a set of bones, and

then to set weights associating each vertex with one or

more bones and define animation curves. Semi-automatic

sketching tools have followed this pipeline. In early works

such as Yonemoto [9], the user explicitly defines the

different object parts, the skeleton joining them, and then

draws an overall animation. More recent works, for example

Feng et al. [4] in the field of augmented reality, have

analyzed the object shape through morphological

operators [6] to define body parts, and let the user place

end joints of a pre-defined skeleton structure. Until now,

fully-automatic deformation has only been achieved in

objects without bones. For example, computational

geometry researchers such as Sorkine et al. [8] have used

the shape of a character to deform it in an

as-rigid-as-possible way. However, the resulting characters

look as if they were made of a gummy material due to the

lack of bones.

In this work, we aim at generating fully automatically

characters drawn by humans, especially children. To solve

the problem of the many possible animations for a given

drawing, we take inspiration from evolutionary robotics [7],

and use a neural network to control the skeleton animation

within a 2-D physics-based simulator [3]. As in Feng et

al. [4], we automatically extract the skeleton from the

drawing using a morphological thinning operation [6], but

where the latter asks the user to select parts that belong

together, we use a set of heuristics to fully automatically

generate a skeleton. Finally, we animate the original



drawing by meshing it and applying linear blend skinning as

described in Kavan [5].

Generation method
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Figure 1: The animation

generation pipeline.

Figure 1 shows the steps of the animation pipeline:

1. Extraction. The drawing with alpha channel is extracted

from the background image by estimating a grayscale

Gaussian distribution of the background pixels and

considering pixels far from the mean to be foreground.

2. Skeletonization. The drawing is downsampled with

Gaussian blur, and a skeleton is created using

morphological thinning operations [6]. Junctions and line

endings are detected using a Hit-And-Miss transform [2].

The resulting skeleton is cleaned-up by clustering small

bones and splitting long ones.

3. Physical Simulation. The skeleton is converted into an

articulated body with parts connected through revolute

joints, which is run in a physics-based simulator1. Individual

parts are constrained by an angle span, maximum torque

and velocity. Besides the torque, which is proportional to the

bone length, they are constant. This body is controlled by a

feed-forward neural network with input being all joint angles

and creature pose and output being all desired joint

velocities. The network has one hidden layer of the same

size as the output, and each layer is fully connected to the

next. Network weights are optimized using an evolutionary

algorithm2. The fitness function is the horizontal position of

the animated body after a given time in the physical

simulation, modified by a factor to favor keeping a pose

close to the initial one. To avoid exploitation of numerical

errors in the physics engine, a run is terminated early if the

1Rust crate NPhysics, ver. 0.14, https://crates.io/crates/nphysics2d
2Rust crate revonet, ver. 0.2.1, https://crates.io/crates/revonet

character flips or if a joint’s rotation direction changes too

often.

4. Triangulation. To be animated, the drawing is

transformed into a 2-D textured triangle mesh. The outline

is generated with a marching squares algorithm, and then

simplified. A first triangle mesh is generated with an ear

clipping algorithm. The mesh is refined by repeatedly

applying edge flipping, edge splitting, face splitting and

vertex smoothing.

5. Vertex skinning. To animate the drawing given the

skeleton movement, we perform vertex skinning [5]. Each

vertex of the triangle mesh is associated with at most four

bones from the skeleton. We compute the mesh walking

distance to each bone, and we keep the four closest. We

weight their contribution using a function of the distance

through a Gaussian kernel. We export the result to the glTF

binary format3.

User study
To assess the effectiveness of our approach, we ran a user

study with 26 participants who submitted 38 drawings.

While our goal is to develop a system usable by children, in

this pilot study our participants are mostly young adults

(median approximately 26 years old). The reason is that the

generated animations can be uncanny sometimes and we

did not want to scare children. We interacted with the

participants through emails, received their drawings, and

sent them the resulting animations along with a link to a

Google Forms questionnaire per drawing. The

questionnaire had the following questions:

1. How do you feel about the generated animation?

3glTF is a standard 3D format, see https://www.khronos.org/gltf/



2. I feel the desire to draw and view additional

characters and the resulting animations.

3. The resulting animation gave me additional ideas for

characters to draw.

4. Should I make my own video game, I would prefer the

animated character over its static version.

5. Please write up to three emotions that you felt at the

sight of the resulting animation or which you now

associate with it.

Question 1 had possible answers from “Very Satisfied” to

“Very Dissatisfied” (with corresponding smileys) and

questions 2, 3, 4 from “Strongly Agree” to “Strongly

Disagree”, all on a 5-point Likert scale. Question 5 was free

text, and participants could optionally provide comments.

In this study, we also performed these manual steps:

Extraction. We extracted the drawing by hand using a

photo editor.

Selection. For each drawing we ran 5 evolutions, and

selected the best result in terms of motion distance,

periodicity, and pose consistency of the movement.

Video preparation. Before sending the results to the users,

we removed the initial, non-periodic part of the motion.

Results
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Figure 2: The best (top blue) and

mean (bottom red) fitness

averaged over the 38 drawings.
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Figure 3: A word cloud of the

emotions expressed by our user

study participants.

We implemented our system using Rust4. For each

drawing, we ran the evolutionary algorithm over 40

generations, with a population of 100 individuals, and 15

seconds of simulation per creature and generation. Figure 2

shows the best and mean fitness of each evolution

averaged over the 38 drawings. In average, extraction and

skeletonization takes 1.9 s, the physics-based simulation

64 s, and the triangulation and vertex skinning 1.4 s.

4https://www.rust-lang.org/

Most participants (60 %) felt satisfied with the generated

animation (Figure 4). The method elicits curiosity, as 75 %

of the participants wanted to draw additional characters and

see them animated (Figure 5). Almost half (44 %) were

inspired with new ideas of characters to draw after viewing

the animation (Figure 6). A majority (60 %) preferred the

animated version to a static version should they create a

video game (Figure 7).

The emotions reported by the participants are summarized

in Figure 3. We see that positive emotions such as “joy” and

“fun” dominate. Then we can see a feeling of strangeness

with words such as “surprise”, “confusion” and “laughter”.

Finally, there is a wide span of low-frequency dissatisfaction.

Discussion
User perception. In Figure 8 we see that the satisfaction is

highly correlated to the naturalness of the animation. In

particular, when participants are dissatisfied, it is either

because the result is uncanny, sometimes even spooky, or

because the movement is not clear enough.

Limitations of the method. Our method explicitly assumes

the character to have a skeleton. If the drawing consists

primarily of a face or is a sponge-like creature, the result will

not be ideal. We run the simulation in 2 dimensions, but 2-D

characters are typically projections of 3-D characters, and

solely animating them using a 2-D physics simulation is

sub-optimal.

Limitations of the implementation. We do not yet enforce

bones to be within the mesh. For example, if a leg is bent,

the associated knee joint might lie outside. While we

devised stopping conditions to avoid exploitation of the

numerical instabilities of the physics engine, they still are

present in some cases.
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Figure 4: Q. 1, How do you feel

about the generated animation?
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Figure 5: Q. 2, I feel the desire to

draw/animate more characters.
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Figure 6: Q. 3, Animation gave

me new character ideas.
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Figure 7: Q. 4, I prefer animated

vs static for a video game.

Very satisfied joy, curiosity, impressed

Satisfied fun, happiness, surprised

Neutral amused, scared, eccentric

Dissatisfied amused, confused, disappointed

Figure 8: Example animations for the different levels of satisfaction (no one was very dissatisfied), along with the top three associated emotions.



Future work. Besides improving the implementation, we

foresee several changes that should improve the results.

First, we could detect the kind of body parts bones

represent, for example using machine learning, and use this

information to simulate creatures in three dimensions. This

approach should give more realistic gaits. Second, we could

detect the class of creature drawn. If it is a marine creature,

for example, we could use a different physics engine

appropriate for underwater movement. Finally, if the

creature is a face or sponge-like, we could use a

deformable body simulation.

Conclusion
Building on a combination of techniques from computer

graphics and evolutionary robotics, we showed that a

fully-automated 2-D character animation system making few

assumptions on what is drawn is possible. Our system

delivers compelling animations, that, as shown by our user

study, often elicit curiosity and creativity. We believe that

this work can further encourage children to engage in

creative play and exploration using their imagination.
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